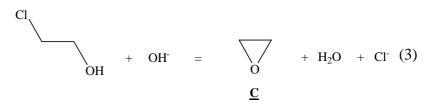

CCP PC1 2007 partie 6

6 Étude de la cinétique d'une réaction d'hydrolyse.

L'éthane-1,2-diol $\underline{\mathbf{A}}$ peut être transformé en composé $\underline{\mathbf{B}}$, appelé chlorhydrine.



6.2 En milieu basique le composé

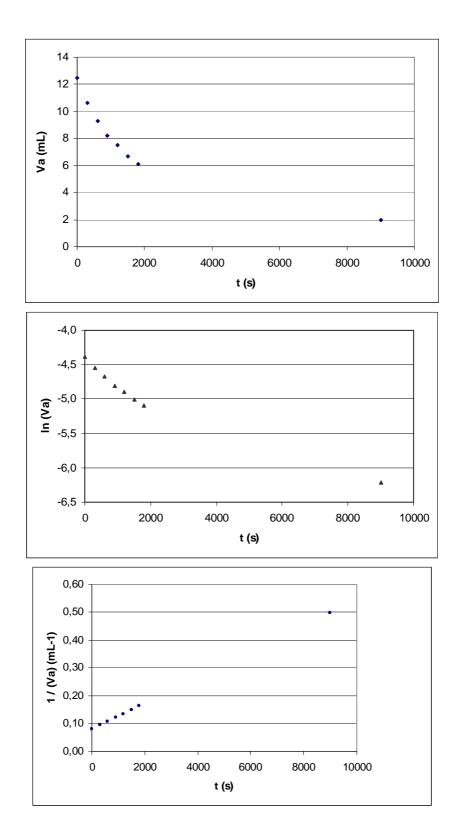
<u>B</u> se cyclise selon la réaction (3):

Pourquoi ne peut-on pas envisager l'obtention de l'époxyde <u>C</u> par cyclisation de <u>A</u> en milieu basique ?

La cinétique de la réaction (3) de cyclisation du composé $\underline{\boldsymbol{B}}$ à 20 °C est étudiée expérimentalement. Pour cela, on dispose d'un volume $V_0 = 200 \text{ mL}$ d'un mélange de soude (c_0) et de chlorhydrine $\underline{\boldsymbol{B}}$ ($c'_0 = 1,25.10^{-1} \text{ mol.L}^{-1}$). À différents instants t, un volume $V_p = 1,0 \text{ mL}$ du mélange réactionnel est prélevé. Le prélèvement est versé dans un erlenmeyer contenant environ 20 mL d'eau glacée. Un dosage est alors effectué par ajout d'acide chlorhydrique, de concentration $c_a = 1,0.10^{-2} \text{ mol.L}^{-1}$. Le volume d'acide versé à l'équivalence est noté V_a .

Les résultats obtenus sont rassemblés dans le tableau suivant :

t (s)	0	300	600	900	1200	1500	1800	9000
$V_a (mL)$	12,5	10,6	9,30	8,20	7,50	6,70	6,10	2,00
ln (V _a)	-4,38	-4,55	-4,68	-4,80	-4,89	- 5,01	-5,10	-6,21
$1/V_a (mL^{-1})$	0,08	0,09	0,11	0,12	0,13	0,15	0,16	0,50


- 6.3 Écrire la réaction du dosage. Proposer un indicateur coloré qui permette de détecter l'équivalence.
- 6.4 Expliquer pourquoi l'eau ajoutée au prélèvement doit être glacée.

La loi de vitesse de la réaction s'écrit $v = k.[\underline{\boldsymbol{B}}]^p.[OH^-]^q.$

- 6.5 Calculer la concentration initiale de soude c_0 . En déduire une expression simplifiée de la loi de vitesse.
- 6.6 Montrer qu'à chaque instant, les concentrations de $\underline{\mathbf{B}}$ et de OH^- sont proportionnelles à V_a .
- 6.7 Les trois graphes donnant respectivement les variations de V_a, ln (V_a) et 1 / V_a en fonction du temps sont regroupés ci-dessous. En utilisant ces graphes **et en justifiant soigneusement votre démarche,** déterminer l'ordre global de la réaction.
- 6.8 Déterminer la valeur numérique de la constante de vitesse k.

Afin de déterminer l'ordre partiel par rapport à chacun des réactifs, on modifie les conditions initiales. Une expérience (non décrite ici) est réalisée avec un large excès de chlorhydrine $\underline{\mathbf{B}}$.

6.9 Écrire l'expression simplifiée de la loi de vitesse dans ces conditions.

- 6.10 En sachant que l'étude de la variation de la concentration en ions hydroxyde montre que dans cette expérience la fonction $\ln([OH^-])$ est une fonction affine du temps et en utilisant le résultat de la question 6.7, indiquer quels sont les ordres partiels vis à vis de chaque réactif. On justifiera soigneusement sa réponse en détaillant son raisonnement.
- 6.11 Proposer un mécanisme en deux étapes, dont un équilibre rapide, pour la réaction de cyclisation.
- 6.12 La vitesse de la réaction est définie comme la vitesse de formation de l'époxyde <u>C</u>. À partir du mécanisme précédent, établir la loi de vitesse. Cette loi est-elle compatible avec la loi de vitesse expérimentale établie à la question 6.10 ?