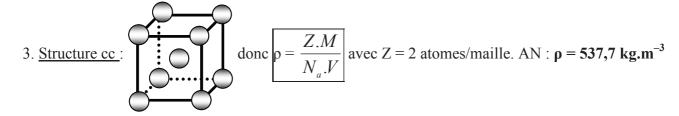
Polytechnique P' 87: corrigé

I. Le lithium: atome, élément, métal

citer le NOTIS de règles nous les décuire pour la

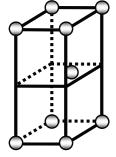

1. <u>Configuration électronique de Li</u> : **1s² 2s¹** par utilisation des règles de Klechkowski, Hund et Pauli

Configuration électronique de Li⁺ : 1s²

aganiser le paragraphes 2. Li est un alcalin. Ses propriétés chimiques sont voisines de celles de Na, K par exemple. Tous ont comme configuration électronique externe ns Ce sont des métaux, très électropositifs et très **réducteurs** (cf E°(Li⁺/Li)). Leurs cations possèdent une couche électronique externe complète donc sont faciles et former et sont très stables.

 $Li \rightarrow Li^+ + e^-$ facilement réalisable (520,3 kJ.mol⁻¹) $Li^+ \rightarrow Li^{2+} + e^-$ difficilement réalisable (7298 kJ.mol⁻¹)

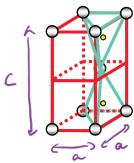
- Happartient également à la 1^{ère} colonne du tableau périodique mais n'est pas un alcalin. **H se** distingue par sa taille (il est très petit) et ses propriétés d'oxydo-réduction. Il est électropositif donc \mathbf{H}^+ se forme assez bien mais plus difficilement que Li^+ : $\mathrm{H} \to (\mathrm{H}^+) + \mathrm{e}^-$ (1312 kJ.mol⁻¹). Le couple H⁺/H₂ est moins réducteur. L'atome H peut également capter un électron et acquérir la configuration électronique de He. L'ion hydrure H-peut donc se former ce qui est spécifique de cet élément.
- He)est le premier gaz inerte du tableau périodique. Sa couche électronique externe 1s² explique son inertie chimique. Les cations alcalins (surtout Li⁺) lui ressemblent et sont également très stables et inertes.



usieuro sous - quetion

Soit m(Al) la masse d'aluminium à enlever, m(Li) la masse de lithium à mettre à la place. Notons p(Al), p(Li), v(Al) et v(Li), les masses volumiques et les volumes respectifs des deux métaux. On souhaite donc avoir : (m(Al) - m(Li) = 100 kg) $\bigvee v(Li) = v(Al)$

 $(\rho(Al).v(Al) - \rho(Li).v(Li) = 100 \text{ kg}$ v(Li) = v(Al)ce qui donne les système suivant à résoudre :


On en déduit que : $v(Li) = v(Al) = 0.0462 \text{ m}^3$ On a donc enlevé, $m(Al) = \rho(Al).v(Al) = 125 \text{ kg}$ et remplacé par $m(Li) = \rho(Li).v(Li) = 25 \text{ kg}$.

4. Question hors programme posée telle quelle. A lire si vous avez le temps! Rappels sur la structure hc

Paramètres de la maille : C'est un prisme droit à base losange (a : côté du losange, c : hauteur). La base peut être vue comme un double triangle équilatéral de côté a.

Population Z: 2 atomes / maille (1 atome à chaque sommet : 8*1/8 et 1 atome dans la maille)

Relation entre a et R: 2R = a (les atomes sont en contact sur les segments verts)

Rapport c/a: $\frac{c}{a} = \sqrt{\frac{8}{3}} = 1,633$ (la hauteur c de la maille correspond à 2 fois la hauteur d'un tétraèdre régulier de côté a) (pythagne 2 fris).

Volume : $V = \sqrt{2} a^3$ (il faut calculer la surface \not l'un losange c'est-à-dire 2 fois la surface d'un triangle équilatéral de côté a)

me de mander par mail

Coordinence: 12 (voisins à 2R = a)

Compacité : C = 74%

Supposons donc que le métal Li soit dans un système he idéal donc compact. Si c'est le cas le rapport c/a' suit la relation ci-dessus.

Ici c/a' = 1,637 donc Li est relativement compact. Il y a une petite dilatation en hauteur.

Comparaison des structures cc et hc

Coordinence: 12 pour hc et 8 pour cc Compacité: 74 % pour hc et 68 % pour cc.

On retrouve le fait que la structure CC est moins compacte et moins dense que hc.

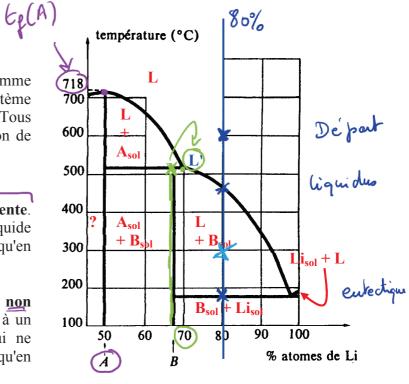
5.

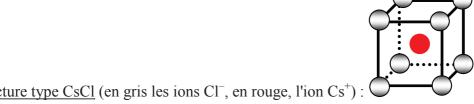
a. Composés définis:

x(Li) = 0.50 donc A = AlLi et

x(Li) = 0.66 donc $B = AlLi_2$.

Complétons ensuite les domaines du diagramme binaire fourni. La lettre L représente un système monophasique liquide contenant Li + Al. Tous les domaines sont biphasiques à l'exception de celui de L.




A est un composé défini à fusion congruente. Lors de sa fusion, il conduit à une phase liquide qui contient la même proportion Al/Li qu'en phase solide ici 50/50:

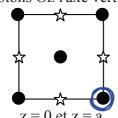
$$AlLi_{sol} = Al_{liq} + Li_{liq}$$

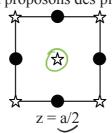
B est un composé défini à fusion non congruente. Lors de sa fusion, il conduit à un autre solide et une phase liquide L' qui ne contient pas la même proportion Al/Li qu'en phase solide ici 33/66 contre 30/70 :

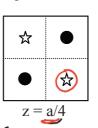
((AlLi_{2sol} =
$$0.25$$
 AlLi_{sol} + 0.75 Al_{liq} + 1.75 Li_{liq}

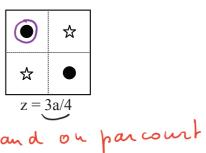
b. <u>Structure type CsCl</u> (en gris les ions Cl⁻, en rouge, l'ion Cs⁺):

Sur la diagonale de la maille : $\sqrt{3}$.a_{CsCl} = 2.(R₊ + R₋)


avec ici $R_+ = R(AI) = a'' \cdot \sqrt{2}/4 = 0.1428$ nm et $R_- = R(Li) = a \cdot \sqrt{3}/4 = 0.1516$ nm (pour cc) On a donc $2.(R_+ + R_-) = 0.5889$ nm en théorie.


Pour la maille réelle, $a_{réel} = 0.638$ nm soit $\sqrt{3}$. $a_{réel} = 1.1050$ nm.

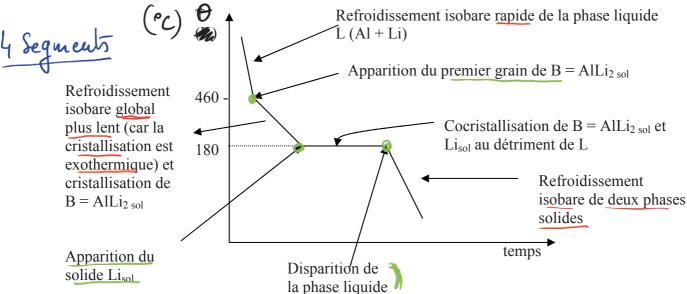

Manifestement $\sqrt{3}$. $a_{r\acute{e}el} \neq 2$.(R(Li) + R(Al)). Le modèle CsCl ne convient pas.


Structure type NaTl (Tl = thallium): maille cubique de côté a

Notons Oz l'axe vertical et proposons des plans de coupes avec Na = ● et Tl = ☆

a

0


Sur la grande diagonale de la maille, on trouve donc :

Donc pour ce modèle : $\sqrt{3}$. $a_{NaTl} = 4.(R_{Na} + R_{Tl})$

Ici $\sqrt{3}$. $a_{r\acute{e}el} = 1,1050$ nm et 4.(R(Li) + R(Al)) = 1,1777 nm. Le modèle NaTl n'est donc pas parfait mais est meilleur que le précédent pour décrire AlLi.

c. D'après le diagramme binaire fourni, on voit que $T_{\text{fus}}(\text{Li}) = 190^{\circ}\text{C}$ tandis que $T_{\text{fus}}(\text{AlLi}) = 718^{\circ}\text{C}$. Il est donc préférable d'utiliser AlLi si on veut travailler à température élevée.

d. Courbe de refroidissement pour x(Li) = 0.80 (voir le diagramme plus haut).

A 300 ° C, le système est biphasique L + $B = AlLi_{2 \text{ sol}}$

<u>Définition</u>: Nombre de paramètres intensifs nécessaires et suffisants pour décrire l'état d'équilibre (donc pour calculer tous les autres).

 $\underline{\text{Calcul}}: V = X - Y \text{ avec}$

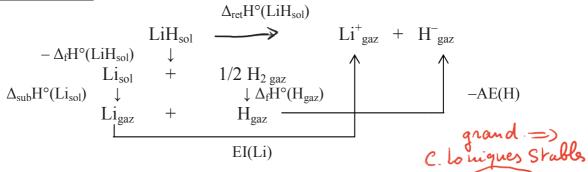
X : nbre de paramètres intensifs du système

Y : nbre de relations linéairement indépendantes établies entre les paramètres intensifs

X = 4 car on doit pouvoir donner (ou calculer) la valeur de T, P et 2 fractions molaires.

Or il y a Y = 2 relations entre ces paramètres

En effet on a : $\sum x_i = 1$ et la loi de Gulberg et Waage correspondant à la cristallisation de B qui relie T (à travers K°) et les x_i donc Y = 2


$$V = X - Y = 2$$

Commentaires : on peut imposer (choisir) deux paramètres intensifs et observer un état d'équilibre. Par exemple, on peut choisir la température et la pression.

Variance réduite: variance diminuée du nombre de choix de paramètres intensifs (ici P) donc $\overline{V_{red} = V - R = dg} = 1$. On voit donc qu'à pression fixée, T peut évoluer.

III L'hydrure de lithium

- a. $\chi(H) > \chi(Li)$ donc la liaison est polarisée $\delta^+ Li H^{\delta^-}$. hydrure b. Par définition : $\|\mu\| = q.d = \delta$ let d Or d in d
- ionique.
- 9= 5xlel 2.
- a. Cycle de Born-Haber

$$\Delta_{ret}H^{\circ}(LiH_{sol}) = -\Delta_{f}H^{\circ}(LiH_{sol}) + \Delta_{sub}H^{\circ}(Li_{sol}) + \Delta_{f}H^{\circ}(H_{gaz}) + EI(Li) - AE(H) = 901,7 \text{ kJ.mol}^{-1}$$
 b. On calcule $\mathbf{d'} = \mathbf{0.215} \text{ nm}$

- c. Dans la structure modèle NaCl, le paramètre de maille est tel que a = $2.(R_+ + R_-) = 2.d'$ donc $a_{th} = 0.429 \text{ nm} > a_{exp} = 0.408 \text{ nm}.$
- 3. La liaison Li–H a un caractère covalent.

La liaison LiH n'est donc pas purement ionique ce qui confirme le résultat de la question III.1.b.. Ce résultat est logique car Li+ est un cation très petit donc très polarisant tandis que H⁻ est très polarisable. Saus Solvanh.

On peut envisager l'électrolyse de l'hydrure de lithium fondu car le pourcentage ionique est élevé donc la conduction électrique sera élevée à l'état fondu.

A l'anode, on oxyde H en H₂

A la cathode, on réduit Li⁺ en Li.

comant aincule : de

si orbitale est diffuse c'est à dire volemineuse done elle pent se déformer